電子元器件鍍金的發(fā)展趨勢:隨著電子技術(shù)的飛速發(fā)展,電子元器件鍍金呈現(xiàn)新趨勢。一方面,向高精度、超薄化方向發(fā)展,以滿足小型化、集成化電子設(shè)備的需求,對鍍金工藝的精度與均勻性提出更高要求。另一方面,環(huán)保型鍍金工藝備受關(guān)注,研發(fā)無氰鍍金等綠色工藝,減少對環(huán)境的污染。此外,納米鍍金技術(shù)等新技術(shù)不斷涌現(xiàn),有望進一步提升鍍金層的性能,為電子元器件鍍金帶來新的突破。電子元器件鍍金與可靠性的關(guān)系:電子元器件鍍金是提升其可靠性的重要手段。質(zhì)量的鍍金層可有效防止元器件表面氧化、腐蝕,避免因接觸不良導致的信號中斷、電氣性能下降等問題。穩(wěn)定的鍍金層還能提高元器件的耐磨性,在頻繁插拔、振動等工況下,保證連接的可靠性。同時,良好的鍍金工藝與質(zhì)量控制,可減少生產(chǎn)過程中的不良品率,降低設(shè)備故障風險,從而提高整個電子系統(tǒng)的可靠性,保障電子設(shè)備穩(wěn)定運行。鍍金工藝不達標易導致鍍層脫落,影響元器件正常使用。河北芯片電子元器件鍍金鎳
圳市同遠表面處理有限公司的IPRG專力技術(shù)從以下幾個方面改善電子元器件鍍金層的耐磨性能1:界面活化格命:采用“化學蝕刻+離子注入”雙前處理技術(shù),在鎢銅表面形成0.1μm梯度銅氧過渡層,使金原子附著力從12MPa提升至58MPa,較傳統(tǒng)工藝增強383%。通過增強金原子與基材的附著力,使鍍金層在受到摩擦等外力作用時,更不容易脫落,從而提高耐磨性能。鍍層結(jié)構(gòu)創(chuàng)新:突破單層鍍金局限,開發(fā)“0.5μm鎳阻擋層+1.2μm金層+0.3μm釕保護層”三明治結(jié)構(gòu)。鎳阻擋層可以阻止銅原子擴散導致的“黃金紅斑”,同時提高整體鍍層的硬度;釕保護層具有高硬度和良好的耐磨性,使表面硬度達HV650,耐磨性提升10倍。熱應(yīng)力馴服術(shù):在鍍后熱處理環(huán)節(jié),通過“階梯式升溫-脈沖式降溫”工藝(200°C→350°C→液氮急冷),將鍍層與基材的熱膨脹系數(shù)匹配度從68%提升至94%,消除80%以上的界面裂紋風險。減少了因熱應(yīng)力導致的界面裂紋,使鍍金層更加牢固地附著在基材上,在耐磨過程中不易出現(xiàn)裂紋進而剝落,提高了耐磨性能。山東片式電子元器件鍍金同遠表面處理公司擁有 5000 多平工廠,設(shè)備先進,高效完成電子元器件鍍金訂單。
可靠的檢測體系是鍍金質(zhì)量的保障,同遠建立了 “三級檢測” 流程。初級檢測用 X 射線測厚儀,精度達 0.01μm,確保每批次產(chǎn)品厚度偏差≤3%;中級檢測通過鹽霧試驗箱(5% NaCl 溶液,35℃),汽車級元件需耐受 96 小時無銹蝕,航天級則需突破 168 小時;終級檢測采用萬能材料試驗機,測試鍍層結(jié)合力,要求≥5N/cm2。針對 5G 元件的高頻性能,還引入網(wǎng)絡(luò)分析儀,檢測接觸電阻變化率,插拔 5000 次后波動需控制在 5% 以內(nèi)。這套體系使產(chǎn)品合格率穩(wěn)定在 99.5% 以上,遠超行業(yè) 95% 的平均水平。
鍍金層對元器件的可焊性有影響,理論上金具有良好的可焊性,但實際情況中受多種因素影響,可能會導致可焊性變差1。具體如下1:從理論角度看:金的化學性質(zhì)穩(wěn)定,不易氧化,能為焊接提供良好的表面條件。鍍金層可以使電子元器件表面更容易與焊料結(jié)合,降低焊接過程中金屬表面氧化層的影響,有助于提高焊接質(zhì)量和可靠性,減少虛焊、脫焊等問題的發(fā)生。從實際情況看:孔隙率問題:金鍍層的孔隙率較高,當金鍍層較薄時,容易在金鍍層與其基體(如鎳或銅)之間因電位差產(chǎn)生電化學腐蝕,從而在金鍍層表面形成一種肉眼不可見的氧化物層。這層氧化物會阻礙焊料與鍍金層的潤濕和結(jié)合,導致可焊性下降。有機污染問題:鍍金層易于吸附有機物質(zhì),包括鍍金液中的有機添加劑等,容易在其表面形成有機污染層。這些有機污染物會使焊料不能充分潤濕基體金屬或鍍層金屬,進而影響焊接質(zhì)量,造成虛焊等問題。鍍金讓電子元件抗蝕又延長使用期限。
電鍍金和化學鍍金的本質(zhì)區(qū)別在于,電鍍金是基于電解原理,依靠外加電流促使金離子在基材表面還原沉積;而化學鍍金是利用化學氧化還原反應(yīng),通過還原劑將金離子還原并沉積到基材表面,無需外加電流12。具體如下:電鍍金原理:將待鍍的電子元件作為陰極,純金或金合金作為陽極,浸入含有金離子的電鍍液中。當接通電源后,在電場作用下,陽極發(fā)生氧化反應(yīng),金原子失去電子變成金離子進入溶液;溶液中的金離子則向陰極移動,在陰極獲得電子被還原為金原子,沉積在電子元件表面,形成鍍金層?;瘜W鍍金原理1:利用還原劑與金鹽溶液中的金離子發(fā)生氧化還原反應(yīng),使金離子得到電子還原成金屬金,直接在基材表面沉積形成鍍層。常用的還原劑有次磷酸鈉、硼氫化鈉等。由于是化學反應(yīng)驅(qū)動,無需外接電源,只要鍍液中還原劑和金離子濃度等條件合適,反應(yīng)就能持續(xù)進行,在基材表面形成金層。電子元器件鍍金,提升性能與可靠性。山東片式電子元器件鍍金
電子元器件鍍金在連接器、芯片引腳等關(guān)鍵部位應(yīng)用廣闊,保障可靠性。河北芯片電子元器件鍍金鎳
鍍金層的孔隙率過高會對電子元件產(chǎn)生諸多危害,具體如下:加速電化學腐蝕:孔隙會使底層金屬如鎳層暴露在空氣中,在潮濕或高溫環(huán)境中,暴露的鎳層容易與空氣中的氧氣或助焊劑中的化學物質(zhì)發(fā)生反應(yīng),形成氧化鎳或其他腐蝕產(chǎn)物,進而加速電子元件的腐蝕,縮短其使用壽命。降低焊接可靠性:孔隙會導致焊接點的金屬間化合物不均勻分布,影響焊接強度和導電性能,使焊接點容易出現(xiàn)虛焊、脫焊等問題,降低電子元件焊接的可靠性,嚴重時會導致電路斷路,影響電子設(shè)備的正常運行。增大接觸電阻:孔隙的存在可能使鍍金層表面不夠致密,影響電子元件的導電性,導致接觸電阻增大。這會增加信號傳輸過程中的能量損失,影響信號的穩(wěn)定性和清晰度,對于高頻信號傳輸?shù)碾娮釉?,可能會造成信號衰減和失真。引發(fā)接觸故障:若基底金屬是銅,銅易向鍍金層擴散,當銅擴散到表面后會在空氣中氧化生成氧化銅膜。同時,孔隙會使鎳暴露在環(huán)境中,與大氣中的二氧化硫反應(yīng)生成硫酸鎳,該生成物絕緣且體積較大,會沿微孔蔓延至鍍金層上,導致接觸故障,影響電子元件的正常工作。河北芯片電子元器件鍍金鎳