廠家鎖相紅外熱成像系統(tǒng)P20

來(lái)源: 發(fā)布時(shí)間:2025-08-04

電子產(chǎn)業(yè)的存儲(chǔ)器芯片檢測(cè)中,電激勵(lì)的鎖相熱成像系統(tǒng)發(fā)揮著獨(dú)特作用,為保障數(shù)據(jù)存儲(chǔ)安全提供了有力支持。存儲(chǔ)器芯片如 DRAM、NAND Flash 等,是電子設(shè)備中用于存儲(chǔ)數(shù)據(jù)的關(guān)鍵部件,其存儲(chǔ)單元的質(zhì)量直接決定了數(shù)據(jù)存儲(chǔ)的可靠性。存儲(chǔ)單元若存在缺陷,如氧化層擊穿、接觸不良等,會(huì)導(dǎo)致數(shù)據(jù)丟失、讀寫錯(cuò)誤等問(wèn)題。通過(guò)對(duì)存儲(chǔ)器芯片施加電激勵(lì),進(jìn)行讀寫操作,缺陷存儲(chǔ)單元會(huì)因電荷存儲(chǔ)異常而產(chǎn)生異常溫度。鎖相熱成像系統(tǒng)能夠定位這些缺陷單元的位置,幫助制造商在生產(chǎn)過(guò)程中篩選出合格的存儲(chǔ)器芯片,提高產(chǎn)品的合格率。例如,在檢測(cè)固態(tài)硬盤中的 NAND Flash 芯片時(shí),系統(tǒng)可以發(fā)現(xiàn)存在壞塊的存儲(chǔ)單元區(qū)域,這些區(qū)域在讀寫操作時(shí)溫度明顯升高。通過(guò)標(biāo)記這些壞塊并進(jìn)行屏蔽處理,能夠有效保障數(shù)據(jù)存儲(chǔ)的安全,推動(dòng)電子產(chǎn)業(yè)存儲(chǔ)領(lǐng)域的健康發(fā)展。三維可視化通過(guò)相位信息實(shí)現(xiàn)微米級(jí)深度定位功能,能夠無(wú)盲區(qū)再現(xiàn)被測(cè)物內(nèi)部構(gòu)造。廠家鎖相紅外熱成像系統(tǒng)P20

廠家鎖相紅外熱成像系統(tǒng)P20,鎖相紅外熱成像系統(tǒng)

鎖相熱成像系統(tǒng)的電激勵(lì)方式在電子產(chǎn)業(yè)的多層電路板檢測(cè)中優(yōu)勢(shì)明顯,為多層電路板的生產(chǎn)質(zhì)量控制提供了高效解決方案。多層電路板由多個(gè)導(dǎo)電層和絕緣層交替疊加而成,層間通過(guò)過(guò)孔實(shí)現(xiàn)電氣連接,結(jié)構(gòu)復(fù)雜,在生產(chǎn)過(guò)程中容易出現(xiàn)層間短路、盲孔堵塞、絕緣層破損等缺陷。這些缺陷會(huì)導(dǎo)致電路板的電氣性能下降,甚至引發(fā)短路故障。電激勵(lì)能夠通過(guò)不同層的線路施加電流,使電流在各層之間流動(dòng),缺陷處會(huì)因電流分布異常而產(chǎn)生溫度變化。鎖相熱成像系統(tǒng)可以通過(guò)檢測(cè)層間的溫度變化,精細(xì)定位缺陷的位置和類型。例如,檢測(cè)層間短路時(shí),系統(tǒng)會(huì)發(fā)現(xiàn)短路點(diǎn)處的溫度明顯高于周圍區(qū)域;檢測(cè)盲孔堵塞時(shí),會(huì)發(fā)現(xiàn)對(duì)應(yīng)位置的溫度分布異常。與傳統(tǒng)的 X 射線檢測(cè)相比,該系統(tǒng)的檢測(cè)速度更快,成本更低,而且能夠直觀地顯示缺陷的位置,助力多層電路板生產(chǎn)企業(yè)提高質(zhì)量控制水平。制冷鎖相紅外熱成像系統(tǒng)圖像分析電激勵(lì)作為一種能量輸入方式,能激發(fā)物體內(nèi)部熱分布變化,為鎖相熱成像系統(tǒng)捕捉細(xì)微溫差提供熱源基礎(chǔ)。

廠家鎖相紅外熱成像系統(tǒng)P20,鎖相紅外熱成像系統(tǒng)

這款一體化設(shè)備的核心競(jìng)爭(zhēng)力,在于打破了兩種技術(shù)的應(yīng)用邊界。熱紅外顯微鏡擅長(zhǎng)微觀尺度的熱分布成像,能通過(guò)高倍率光學(xué)系統(tǒng)捕捉芯片表面微米級(jí)的溫度差異;鎖相紅外熱成像系統(tǒng)則依托鎖相技術(shù),可從環(huán)境噪聲中提取微弱的周期性熱信號(hào),實(shí)現(xiàn)納米級(jí)缺陷的精細(xì)定位。致晟光電通過(guò)硬件集成與算法優(yōu)化,讓兩者形成 “1+1>2” 的協(xié)同效應(yīng) —— 既保留熱紅外顯微鏡的微觀觀測(cè)能力,又賦予其鎖相技術(shù)的微弱信號(hào)檢測(cè)優(yōu)勢(shì),無(wú)需在兩種設(shè)備間切換即可完成從宏觀掃描到微觀定位的全流程分析。

RTTLIT 系統(tǒng)采用了先進(jìn)的鎖相熱成像(Lock-In Thermography)技術(shù),這是一種通過(guò)調(diào)制電信號(hào)來(lái)大幅提升特征分辨率與檢測(cè)靈敏度的創(chuàng)新方法。在傳統(tǒng)的熱成像檢測(cè)中,由于背景噪聲和熱擴(kuò)散等因素的影響,往往難以精確檢測(cè)到微小的熱異常。而鎖相熱成像技術(shù)通過(guò)對(duì)目標(biāo)物體施加特定頻率的電激勵(lì),使目標(biāo)物體產(chǎn)生與激勵(lì)頻率相同的熱響應(yīng),然后通過(guò)鎖相放大器對(duì)熱響應(yīng)信號(hào)進(jìn)行解調(diào),只提取與激勵(lì)頻率相關(guān)的熱信號(hào),從而有效地抑制了背景噪聲,極大地提高了檢測(cè)的靈敏度和分辨率。 電激勵(lì)的脈沖寬度與鎖相熱成像系統(tǒng)采樣頻率需匹配,通過(guò)參數(shù)優(yōu)化可大幅提高檢測(cè)信號(hào)的信噪比和清晰度。

廠家鎖相紅外熱成像系統(tǒng)P20,鎖相紅外熱成像系統(tǒng)

電激勵(lì)的參數(shù)設(shè)置對(duì)鎖相熱成像系統(tǒng)在電子產(chǎn)業(yè)的檢測(cè)效果有著決定性的影響,需要根據(jù)不同的檢測(cè)對(duì)象進(jìn)行精細(xì)調(diào)控。電流大小的選擇尤為關(guān)鍵,必須嚴(yán)格適配電子元件的額定耐流值。如果電流過(guò)小,產(chǎn)生的熱量不足以激發(fā)明顯的溫度響應(yīng),系統(tǒng)將難以捕捉到缺陷信號(hào);

而電流過(guò)大則可能導(dǎo)致元件過(guò)熱損壞,造成不必要的損失。頻率的選擇同樣不容忽視,高頻電激勵(lì)產(chǎn)生的熱量主要集中在元件表面,適合檢測(cè)表層的焊接缺陷、線路斷路等問(wèn)題;低頻電激勵(lì)則能使熱量滲透到元件內(nèi)部,可有效探測(cè)深層的結(jié)構(gòu)缺陷,如芯片內(nèi)部的晶格缺陷。在檢測(cè)復(fù)雜的集成電路時(shí),技術(shù)人員往往需要通過(guò)多次試驗(yàn),確定比較好的電流和頻率參數(shù)組合,以確保系統(tǒng)能夠清晰區(qū)分正常區(qū)域和缺陷區(qū)域的溫度信號(hào),從而保障檢測(cè)結(jié)果的準(zhǔn)確性。例如,在檢測(cè)高精度的傳感器芯片時(shí),通常會(huì)采用低電流、多頻率的電激勵(lì)方式,以避免對(duì)芯片的敏感元件造成干擾。 鎖相熱成像系統(tǒng)優(yōu)化電激勵(lì)檢測(cè)的圖像處理。制冷鎖相紅外熱成像系統(tǒng)

非接觸式檢測(cè)在不破壞樣品的情況下實(shí)現(xiàn)成像,適用于各種封裝狀態(tài)的樣品,包括未開封的芯片和PCBA。廠家鎖相紅外熱成像系統(tǒng)P20

在電子行業(yè),鎖相熱成像系統(tǒng)為芯片檢測(cè)帶來(lái)了巨大的變革。芯片結(jié)構(gòu)精密復(fù)雜,傳統(tǒng)的檢測(cè)方法不僅效率低下,還可能對(duì)芯片造成損傷。而鎖相熱成像系統(tǒng)通過(guò)對(duì)芯片施加周期性的電激勵(lì),使芯片內(nèi)部因故障產(chǎn)生的微小溫度變化得以顯現(xiàn),系統(tǒng)能夠敏銳捕捉到這些變化,進(jìn)而定位電路中的短路、虛焊等故障點(diǎn)。其非接觸式的檢測(cè)方式,從根本上避免了對(duì)精密電子元件的損傷,同時(shí)提升了芯片質(zhì)檢的效率與準(zhǔn)確性。在芯片生產(chǎn)的大規(guī)模質(zhì)檢中,它能夠快速篩選出不合格產(chǎn)品,為電子行業(yè)的高質(zhì)量發(fā)展提供了有力支持。廠家鎖相紅外熱成像系統(tǒng)P20