在人工智能與光學交叉的前沿領域,光頻梳正為光學神經網絡實現(xiàn)人類情感識別提供有力支持。光學神經網絡具有處理速度快、信息容量大等優(yōu)勢,而光頻梳的引入進一步提升了其性能。光頻梳產生的多波長、穩(wěn)定的光信號,可作為光學神經網絡的輸入光源。在情感識別過程中,首先采集人類面部表情、語音等包含情感信息的光學信號,這些信號經光頻梳調制后輸入光學神經網絡。光頻梳的精確頻率特性有助于更準確地編碼情感信息,使神經網絡能夠更敏銳地捕捉到情感特征。例如在面部表情識別中,不同情感對應的面部肌肉細微變化所引起的光學信號差異,經光頻梳調制后,可被光學神經網絡更準確地識別與分類,從而提升情感識別的準確率與效率,為智能人機交互等領域帶來新的發(fā)展機遇 。光頻梳技術:點亮光學測量新篇章,開啟科研新紀元。光纖光梳光頻梳
光頻梳:一種高精度、高分辨率的光學工具。其高精度體現(xiàn)在頻率測量的誤差可低至 10^-18,相當于 138 億年(宇宙年齡)只偏差 1 秒;高分辨率則能區(qū)分只相差幾赫茲的頻率成分,遠超傳統(tǒng)光學工具。這種性能使其在多領域發(fā)揮主要作用:在量子科技中,可精確操控原子、離子的量子態(tài),助力量子計算機的研發(fā);在精密制造中,結合光學干涉技術實現(xiàn)納米級定位,提升芯片制造的光刻精度;在醫(yī)學診斷中,通過分析血液中微量生物標志物的光譜特征,實現(xiàn)疾病的早期篩查;在基礎科學研究中,為驗證相對論、探測引力波等前沿課題提供了前所未有的測量手段,堪稱 “光學領域的精密天平”。光纖飛秒光頻梳應用利用光頻梳可以解決傳統(tǒng)激光跟蹤儀速度慢、需要分時跟蹤不同的目標等問題。
光頻梳是一種能夠產生一系列具有精確延遲脈沖的激光器。其工作原理基于鎖模技術,通過巧妙調控激光腔內的增益與損耗,讓激光以極短脈沖的形式輸出。這些脈沖在時間域上呈現(xiàn)出等間隔分布,猶如一把細密梳子的齒。在頻域中,對應的頻率梳狀結構具有極高的頻率精度和穩(wěn)定性。每個梳齒的頻率間隔精確可控,這種獨特性質使得光頻梳在眾多領域展現(xiàn)出巨大潛力。在精密光譜測量中,它可作為超高精度的頻率標尺,分辨原子、分子光譜的細微特征;在光通信領域,有助于實現(xiàn)超高速、大容量的數(shù)據(jù)傳輸,大幅提升通信效率,為現(xiàn)代科技發(fā)展注入強大動力 。
光頻梳本質上是一種特殊的激光器,其獨特之處在于能夠產生一系列具有精確延遲的脈沖。在其內部,通過巧妙的設計與復雜的物理過程實現(xiàn)這一特性。以飛秒光頻梳為例,飛秒激光器中的鎖模機制發(fā)揮著關鍵作用。鎖模過程使得激光器輸出的脈沖在時間上高度有序,相鄰脈沖之間具有精確、穩(wěn)定的時間延遲。這種精確延遲源于激光器諧振腔內的各種光學元件對光脈沖的精細調控,包括色散補償元件對脈沖展寬的控制,以及增益介質對脈沖能量的補充與穩(wěn)定。這些精確延遲的脈沖在頻域表現(xiàn)為等間隔的分立光譜,即光頻梳的梳齒。在實際應用中,如光學相干層析成像技術里,光頻梳產生的精確延遲脈沖可用于對生物組織內部結構進行高分辨率成像,通過分析不同深度組織反射光脈沖的延遲時間,獲取組織的詳細信息 。隨著光頻梳技術的不斷發(fā)展和成熟,它將在生物醫(yī)學、環(huán)境監(jiān)測、材料科學等領域發(fā)揮更大的作用。
光學頻率梳(Optical frequency comb)是一種特殊的激光光源。與普通激光的單頻或窄帶頻譜不同,它的頻譜由一系列等間隔的離散頻率點組成,形似梳子,故得名 “頻梳”;在時間域上,它表現(xiàn)為重復周期穩(wěn)定的超短脈沖序列,脈沖寬度可低至飛秒級(1 飛秒 = 10^-15 秒)。這種特殊性源于鎖模技術 —— 通過在激光諧振腔內引入調制,迫使不同頻率的激光模式形成固定相位關系,從而輸出相干的脈沖序列。其特性包括寬頻譜覆蓋(可從紫外延伸至中紅外)、頻率間隔恒定(由脈沖重復頻率決定)、全頻譜相干性,這使其成為連接微波頻率(電子學)與光學頻率(光子學)的 “橋梁”,為跨波段精密測量奠定基礎,也是量子信息、光通信等領域的關鍵光源?;诩す馔庹{制法的光頻梳產生及應用研究。紫外光頻梳市場
光頻梳的發(fā)明和發(fā)展為科學研究和技術創(chuàng)新提供了強大的工具和平臺。光纖光梳光頻梳
光頻梳,堪稱光領域的神奇 “舞者”。從原理上看,它源于鎖模激光器產生的周期性激光脈沖串。在時間域里,這些脈沖猶如靈動的舞者,有節(jié)奏地躍動;轉換到頻率空間,便化作等間隔頻率的光譜,好似一把精心打造的光學尺子。這把尺子刻度由鎖模激光重復頻率決定,起點與零頻差值取決于激光脈沖載波和包絡相對相位。憑借如此特性,光頻梳可測量未知頻率,在光學測量中,將原本復雜模糊的測量變得清晰,極大提升了測量精度,助力科學家探索光與物質相互作用的細微奧秘 。光纖光梳光頻梳