深層QPQ替代磷化

來源: 發(fā)布時間:2025-08-06

在工研所QPQ技術的日常生產(chǎn)中,QPQ鹽的質量對工件表面的化合物層特性,包括深度、硬度以及疏松級別,具有至關重要的影響。其中,基鹽中的氰酸根濃度是一個關鍵指標,其精確控制是QPQ技術質量控制流程中的重要環(huán)節(jié)。為了準確檢測并調整基鹽中的氰酸根含量,經(jīng)典的甲醛定氮法被廣泛應用。這一方法需要精心配制甲基紅和亞甲基藍的混合指示劑,以確保在加入酸堿時能夠精確控制反應進程。隨后,通過加入過量的甲醛,溶液中的氨態(tài)氮會被轉化為氫離子。在酚酞指示劑的作用下,利用氫氧化鈉對轉化后的氫離子進行滴定。通過記錄滴定過程中消耗的氫氧化鈉量,可以精確地推算出基鹽中氰酸根的濃度。這一檢測與調整過程不僅確保了QPQ處理中鹽的質量,也為工件表面形成高質量化合物層提供了有力保障,從而進一步提升了工件的整體性能和使用壽命。QPQ表面處理可以提高刀具的熱穩(wěn)定性,減少熱變形的可能性。深層QPQ替代磷化

深層QPQ替代磷化,QPQ

離子滲氮是傳統(tǒng)滲氮手段之一,在表面處理行業(yè)應用廣,離子滲氮后產(chǎn)品外觀呈灰色,雖然可以通過在滲氮過程中通入適量的氧氣來提高表面的氧含量來提高工件的耐蝕性,但是遠達不到工研所QPQ氧化形成的氧化膜抗蝕性效果。離子滲氮溫度更低,對于變形要求高、回火溫度低,而工研所QPQ氧化處理的外觀呈均勻一致的黑色,相較于離子滲氮外觀及耐腐性更有優(yōu)勢,將兩種滲氮工藝相結合,既可以保證離子滲氮形成的物相結構不發(fā)生變化,又可以在表面形成新的氧化膜從而提高工件的耐蝕性,同時也可適用于更多的生產(chǎn)場景,應用在更多的領域。表面防護QPQ白亮層QPQ表面處理可以增加刀具的抗磨性,減少刀具更換頻率。

深層QPQ替代磷化,QPQ

齒輪在各類機械設備中的使用過程中,常常面臨著重載荷、高磨損以及高疲勞的嚴苛服役特性。這些特性要求齒輪材料必須具備良好的高韌性、高耐磨性和高疲勞強度,以確保其長期穩(wěn)定運行。經(jīng)過工研所QPQ表面符合處理技術的處理后,齒輪樣件的表面會形成一層由氮化物、碳化物及氧化物組成的混合強化層。這一強化層不僅明顯提升了零構件的表面硬度、耐磨性和耐蝕性,而且能夠保留芯部原有的良好韌性。更為可貴的是,經(jīng)過QPQ處理的工件幾乎不會發(fā)生變形,從而確保了齒輪在復雜工況下的高精度和可靠性。

不銹鋼分為奧氏體不銹鋼、馬氏體不銹鋼以及鐵素體不銹鋼,適用于室外潮濕環(huán)境,具有很強耐腐蝕性能的304屬于奧氏體不銹鋼。奧氏體不銹鋼由于含碳量低,是不能通過熱處理來提高硬度的,如果表面要進行硬化處理,可以通過低溫離子滲氮處理(QPQ),304不銹鋼中的鉻和氮元素有較好的親和力,可以在氮化過程中生成彌散分布的氮化物起到硬化作用,成都工具研究所QPQ表面復合處理技術處理后的維氏硬度可達1000HV,同時還能保持不銹鋼的耐腐蝕性能。成都工具研究所有限公司的QPQ表面處理技術可以使刀具具備更好的切削性能。

深層QPQ替代磷化,QPQ

成都工具研究所在原有QPQ技術基礎上開發(fā)了深層QPQ技術,化合物層深度更大,由原有的15~20μm增加到30~40μm以上。該技術可明顯提高材料的力學性能和抗蝕性。與其他表面處理方法相比,工件具有更高的耐疲勞強度,能夠明顯提高工件的耐磨性能。工件表面硬度得到提升,提高了工件的耐用性和使用壽命,且具有更高的耐腐蝕性。QPQ處理能夠保持尺寸穩(wěn)定,與其他表面處理方法相比,QPQ處理對零部件尺寸變化的影響較小,有利于保持高精度要求。成都工具研究所有限公司通過QPQ表面處理技術,使刀具具有更好的耐磨性。表面防護QPQ加工

通過QPQ表面處理,刀具的表面可以形成一層致密的氮化物層。深層QPQ替代磷化

工研所的QPQ表面復合處理技術是一種先進的表面處理工藝,用于提高金屬部件的耐磨性和耐腐蝕性。將零件浸入氮化鹽浴中,然后進行淬火和拋光,以形成堅硬的耐腐蝕表面層。與傳統(tǒng)的表面處理方法相比,QPQ具有以下幾個優(yōu)點:提高耐磨性——QPQ過程中形成的表面硬化層可明顯提高部件的耐磨性;增強耐腐蝕性——軟氮化層可提供出色的防腐蝕保護,延長經(jīng)處理部件的使用壽命;提高疲勞強度——QPQ可提高部件的疲勞強度,使其在循環(huán)負載條件下更加耐用。深層QPQ替代磷化

標簽: QPQ 切削刀具