邊緣計(jì)算資源有限,攻擊者利用僵尸網(wǎng)絡(luò)發(fā)起低頻高并發(fā)攻擊,可輕易耗盡邊緣節(jié)點(diǎn)算力。2024年某智能電網(wǎng)試點(diǎn)項(xiàng)目中,攻擊者通過(guò)偽造海量電力負(fù)荷數(shù)據(jù)請(qǐng)求,導(dǎo)致區(qū)域邊緣控制中心癱瘓2小時(shí),影響10萬(wàn)戶(hù)供電。更隱蔽的攻擊方式是針對(duì)邊緣AI模型的“數(shù)據(jù)投毒”,通過(guò)篡改訓(xùn)練數(shù)據(jù)使模型誤判,某自動(dòng)駕駛測(cè)試場(chǎng)曾因此發(fā)生碰撞事故。邊緣設(shè)備部署環(huán)境復(fù)雜,從工廠(chǎng)車(chē)間到野外基站,物理防護(hù)措施薄弱。某油田的邊緣數(shù)據(jù)采集終端因未安裝防拆報(bào)警裝置,被不法分子直接拔除硬盤(pán),導(dǎo)致地質(zhì)勘探數(shù)據(jù)長(zhǎng)久丟失。供應(yīng)鏈環(huán)節(jié)同樣存在風(fēng)險(xiǎn),某邊緣服務(wù)器廠(chǎng)商因使用被篡改的固件,導(dǎo)致交付的200臺(tái)設(shè)備均預(yù)置后門(mén)。邊緣計(jì)算為車(chē)聯(lián)網(wǎng)提供了高效的數(shù)據(jù)處理能力。廣東前端小模型邊緣計(jì)算供應(yīng)商
據(jù)IDC預(yù)測(cè),到2026年,全球5G邊緣計(jì)算市場(chǎng)規(guī)模將突破500億美元,年復(fù)合增長(zhǎng)率超40%。倍聯(lián)德正加速布局兩大方向:邊緣大模型:將千億參數(shù)模型壓縮至邊緣設(shè)備可運(yùn)行范圍,實(shí)現(xiàn)質(zhì)檢、安全監(jiān)控等場(chǎng)景的本地化智能決策;5G-TSN融合:通過(guò)時(shí)間敏感網(wǎng)絡(luò)(TSN)與5G低時(shí)延特性的結(jié)合,構(gòu)建確定性工業(yè)通信底座,支撐AGV協(xié)同、遠(yuǎn)程操控等超實(shí)時(shí)場(chǎng)景。在5G與邊緣計(jì)算的深度融合中,數(shù)據(jù)處理的被徹底打通。以倍聯(lián)德為象征的技術(shù)企業(yè),正通過(guò)硬件創(chuàng)新、軟件優(yōu)化與生態(tài)共建,推動(dòng)邊緣計(jì)算從“輔助工具”升級(jí)為“重要基礎(chǔ)設(shè)施”,為數(shù)字經(jīng)濟(jì)的高質(zhì)量發(fā)展注入新動(dòng)能。mec邊緣計(jì)算架構(gòu)在工業(yè)物聯(lián)網(wǎng)中,邊緣計(jì)算將數(shù)據(jù)決策周期從秒級(jí)縮短至毫秒級(jí),支持高速自動(dòng)化控制。
隨著6G、AI大模型與邊緣計(jì)算的深度融合,倍聯(lián)德正布局兩大前沿方向:邊緣大模型:將參數(shù)量達(dá)6710億的醫(yī)療大模型壓縮至邊緣設(shè)備可運(yùn)行范圍,支持基層醫(yī)院在本地完成從術(shù)前規(guī)劃到術(shù)中決策的全流程AI輔助;數(shù)字孿生工廠(chǎng):通過(guò)邊緣計(jì)算實(shí)時(shí)映射生產(chǎn)線(xiàn)數(shù)據(jù),結(jié)合數(shù)字孿生技術(shù)實(shí)現(xiàn)產(chǎn)能預(yù)測(cè)、能耗優(yōu)化等智能決策,使工廠(chǎng)運(yùn)營(yíng)成本降低25%。“邊緣計(jì)算不是對(duì)云計(jì)算的替代,而是智能世界的‘神經(jīng)末梢’?!北堵?lián)德CEO王偉表示。目前,該公司已擁有80余項(xiàng)知識(shí)產(chǎn)權(quán),其邊緣計(jì)算產(chǎn)品已成功應(yīng)用于礦山、交通、工業(yè)物聯(lián)網(wǎng)等20余個(gè)領(lǐng)域,市場(chǎng)占有率突破20%。在這場(chǎng)邊緣變革中,這家深圳企業(yè)正以技術(shù)創(chuàng)新重新定義產(chǎn)業(yè)邊界,讓算力像水電一樣觸手可及。
倍聯(lián)德技術(shù)已深度融入自動(dòng)駕駛?cè)湕l:車(chē)路協(xié)同:在無(wú)錫國(guó)家的車(chē)聯(lián)網(wǎng)先導(dǎo)區(qū),倍聯(lián)德部署的路側(cè)邊緣計(jì)算節(jié)點(diǎn)可實(shí)時(shí)處理1平方公里范圍內(nèi)所有車(chē)輛的數(shù)據(jù),將信號(hào)燈配時(shí)優(yōu)化效率提升40%,路口通行能力提高25%。礦區(qū)自動(dòng)駕駛:為內(nèi)蒙古某煤礦設(shè)計(jì)的防爆型邊緣計(jì)算設(shè)備,可在-40℃至60℃極端環(huán)境下穩(wěn)定運(yùn)行,支持5G+TSN確定性網(wǎng)絡(luò),使無(wú)人礦卡調(diào)度延遲從秒級(jí)降至毫秒級(jí),年運(yùn)輸效率提升30%。Robotaxi運(yùn)營(yíng):與某頭部出行平臺(tái)合作的項(xiàng)目中,倍聯(lián)德邊緣計(jì)算平臺(tái)實(shí)現(xiàn)遠(yuǎn)程監(jiān)控與本地決策的協(xié)同,使單車(chē)日均接單量從12單提升至18單,乘客等待時(shí)間縮短35%。邊緣計(jì)算的發(fā)展推動(dòng)了媒體和娛樂(lè)行業(yè)的創(chuàng)新。
傳統(tǒng)AI大模型訓(xùn)練依賴(lài)云端算力,但高昂的帶寬成本和隱私泄露風(fēng)險(xiǎn)成為規(guī)?;瘧?yīng)用的瓶頸。倍聯(lián)德通過(guò)“聯(lián)邦學(xué)習(xí)+遷移學(xué)習(xí)”技術(shù),重新定義了云端訓(xùn)練的邊界:在醫(yī)療領(lǐng)域,倍聯(lián)德為某三甲醫(yī)院部署的聯(lián)邦學(xué)習(xí)平臺(tái),支持10家分院在本地訓(xùn)練醫(yī)療影像分析模型,只共享模型參數(shù)而非原始數(shù)據(jù)。這一方案使肺病早期篩查準(zhǔn)確率提升至96%,同時(shí)滿(mǎn)足《個(gè)人信息保護(hù)法》對(duì)醫(yī)療數(shù)據(jù)隱私的要求。技術(shù)實(shí)現(xiàn)上,平臺(tái)采用差分隱私技術(shù)對(duì)參數(shù)進(jìn)行加密,并通過(guò)安全聚合算法確保云端無(wú)法反推原始數(shù)據(jù)。未來(lái)三年,邊緣計(jì)算將在AR/VR、元宇宙等沉浸式場(chǎng)景中成為關(guān)鍵基礎(chǔ)設(shè)施。醫(yī)療系統(tǒng)邊緣計(jì)算視頻分析
邊緣計(jì)算使得數(shù)據(jù)可以在源頭附近被快速處理。廣東前端小模型邊緣計(jì)算供應(yīng)商
針對(duì)中小企業(yè)的算力需求,倍聯(lián)德推出全球初款24重要Atom架構(gòu)緊湊型邊緣服務(wù)器,其功耗只350W,卻可支持8路1080P視頻流實(shí)時(shí)分析。在浙江某紡織企業(yè)的質(zhì)量檢測(cè)場(chǎng)景中,該設(shè)備替代傳統(tǒng)工控機(jī)后,使單條生產(chǎn)線(xiàn)部署成本從15萬(wàn)元降至3.8萬(wàn)元,同時(shí)將布匹瑕疵檢出率從82%提升至98%?!斑吘売?jì)算不是‘高級(jí)玩具’,必須讓中小企業(yè)用得起?!北堵?lián)德產(chǎn)品總監(jiān)張華強(qiáng)調(diào)。其HID系列醫(yī)療平板更通過(guò)UL60601-1醫(yī)療認(rèn)證,在基層醫(yī)院實(shí)現(xiàn)心電圖、超聲影像的本地化AI分析,使單臺(tái)設(shè)備診斷效率相當(dāng)于3名主治醫(yī)師,而采購(gòu)成本只為進(jìn)口設(shè)備的1/5。廣東前端小模型邊緣計(jì)算供應(yīng)商