磁粉探傷是一種常用的無損檢測(cè)方法,適用于鐵磁性材料焊接件的表面及近表面缺陷檢測(cè)。其原理基于缺陷處的漏磁場吸附磁粉,從而顯現(xiàn)出缺陷形狀。在檢測(cè)時(shí),首先對(duì)焊接件表面進(jìn)行清潔處理,確保無油污、鐵銹等雜質(zhì)影響檢測(cè)結(jié)果。隨后,將磁粉或磁懸液均勻施加在焊接件表面,并利用磁軛、線圈等設(shè)備對(duì)焊接件進(jìn)行磁化。若焊接件存在裂紋、氣孔、夾渣等缺陷,缺陷處會(huì)產(chǎn)生漏磁場,磁粉便會(huì)聚集在缺陷部位,形成明顯的磁痕。檢測(cè)人員通過觀察磁痕的形狀、位置和大小,就能判斷缺陷的性質(zhì)和嚴(yán)重程度。例如,在壓力容器的焊接檢測(cè)中,磁粉探傷可有效檢測(cè)出焊縫表面及近表面的微小裂紋,這些裂紋若未及時(shí)發(fā)現(xiàn),在容器承受壓力時(shí)可能會(huì)擴(kuò)展,引發(fā)嚴(yán)重安全事故。通過磁粉探傷,能夠提前發(fā)現(xiàn)隱患,為修復(fù)或更換焊接件提供依據(jù),保障壓力容器的安全運(yùn)行。焊接件的高頻感應(yīng)焊接質(zhì)量監(jiān)測(cè),實(shí)時(shí)把控參數(shù),穩(wěn)定焊接質(zhì)量。母材
對(duì)于一些用于儲(chǔ)存液體或氣體的焊接件,如儲(chǔ)罐、管道等,密封性檢測(cè)至關(guān)重要。密封性檢測(cè)的方法有多種,常見的有氣壓試驗(yàn)、水壓試驗(yàn)和氦質(zhì)譜檢漏等。氣壓試驗(yàn)是將焊接件內(nèi)部充入一定壓力的氣體,通常為壓縮空氣,然后使用肥皂水等發(fā)泡劑涂抹在焊接部位,觀察是否有氣泡產(chǎn)生。若有氣泡出現(xiàn),則表明焊接件存在泄漏。水壓試驗(yàn)則是向焊接件內(nèi)部注入水,施加一定的壓力,觀察焊接件是否有滲漏現(xiàn)象。水壓試驗(yàn)不僅可以檢測(cè)焊接件的密封性,還能對(duì)焊接件進(jìn)行強(qiáng)度檢驗(yàn)。對(duì)于一些對(duì)密封性要求極高的焊接件,如航空發(fā)動(dòng)機(jī)的燃油管道焊接件,會(huì)采用氦質(zhì)譜檢漏法。氦質(zhì)譜檢漏儀能夠檢測(cè)到極微量的氦氣泄漏,檢測(cè)精度極高。在進(jìn)行密封性檢測(cè)時(shí),要嚴(yán)格按照相關(guān)標(biāo)準(zhǔn)和規(guī)范進(jìn)行操作,確保檢測(cè)結(jié)果的準(zhǔn)確性。一旦發(fā)現(xiàn)焊接件存在密封問題,需要對(duì)泄漏部位進(jìn)行標(biāo)記,分析泄漏原因,可能是焊縫存在氣孔、裂紋,或者是密封面加工精度不夠等。針對(duì)不同原因,采取相應(yīng)的修復(fù)措施,如補(bǔ)焊、打磨密封面等,以保證焊接件的密封性符合使用要求。E7015閥門密封面堆焊工藝評(píng)定增材制造焊接件通過 CT 掃描,檢測(cè)內(nèi)部孔隙、未熔合等缺陷。
水壓試驗(yàn)不僅能檢測(cè)焊接件的密封性,還能對(duì)焊接件進(jìn)行強(qiáng)度檢驗(yàn)。試驗(yàn)時(shí),向焊接件內(nèi)部注入水,并逐漸升壓至規(guī)定的試驗(yàn)壓力。在升壓過程中,密切觀察焊接件的變形情況,同時(shí)檢查焊縫及密封部位是否有滲漏現(xiàn)象。水壓試驗(yàn)的壓力通常高于焊接件的工作壓力,以模擬可能出現(xiàn)的極端工況。對(duì)于壓力容器的焊接件,水壓試驗(yàn)是重要的質(zhì)量檢測(cè)環(huán)節(jié)。通過水壓試驗(yàn),可檢驗(yàn)焊接接頭的強(qiáng)度和密封性,確保壓力容器在正常工作壓力下安全運(yùn)行。在試驗(yàn)后,還需對(duì)焊接件進(jìn)行外觀檢查,查看是否有因水壓試驗(yàn)導(dǎo)致的表面損傷。若發(fā)現(xiàn)問題,需進(jìn)行修復(fù)和再次檢測(cè),保障壓力容器的質(zhì)量和安全性能。
隨著增材制造技術(shù)在制造業(yè)的廣泛應(yīng)用,3D 打印焊接件的焊縫檢測(cè)面臨新挑戰(zhàn)。外觀檢測(cè)時(shí),借助高精度的光學(xué)顯微鏡,觀察焊縫表面的粗糙度、層間結(jié)合情況以及是否存在明顯的縫隙或孔洞。由于 3D 打印過程的特殊性,內(nèi)部質(zhì)量檢測(cè)采用微焦點(diǎn) X 射線 CT 成像技術(shù),該技術(shù)能對(duì)微小的焊縫區(qū)域進(jìn)行高分辨率三維成像,清晰呈現(xiàn)內(nèi)部的未熔合、氣孔等缺陷的位置、大小及形狀。在航空航天領(lǐng)域的 3D 打印零部件焊縫檢測(cè)中,還會(huì)進(jìn)行力學(xué)性能測(cè)試,如拉伸試驗(yàn)、疲勞試驗(yàn)等,評(píng)估焊縫在復(fù)雜受力情況下的性能。同時(shí),利用電子背散射衍射(EBSD)技術(shù)分析焊縫區(qū)域的晶體取向和織構(gòu),了解 3D 打印過程對(duì)材料微觀結(jié)構(gòu)的影響。通過綜合運(yùn)用多種先進(jìn)檢測(cè)技術(shù),確保增材制造焊接件的質(zhì)量,推動(dòng) 4D 打印技術(shù)在制造業(yè)的可靠應(yīng)用。? 高頻感應(yīng)焊接質(zhì)量監(jiān)測(cè),實(shí)時(shí)監(jiān)控參數(shù),穩(wěn)定焊接質(zhì)量。
焊接過程中,由于熱輸入的不均勻性,焊接件不同部位的硬度可能存在差異,這種硬度不均勻性會(huì)影響焊接件的性能和使用壽命。檢測(cè)時(shí),通常采用硬度計(jì)在焊接區(qū)域及熱影響區(qū)的多個(gè)位置進(jìn)行硬度測(cè)試。常見的硬度計(jì)有布氏硬度計(jì)、洛氏硬度計(jì)和維氏硬度計(jì),根據(jù)焊接件的材質(zhì)、厚度和檢測(cè)精度要求選擇合適的硬度計(jì)。在大型機(jī)械制造中,如重型機(jī)床的焊接床身,硬度不均勻可能導(dǎo)致機(jī)床在運(yùn)行過程中出現(xiàn)變形,影響加工精度。通過繪制硬度分布曲線,可直觀地了解焊接件硬度的變化情況。若發(fā)現(xiàn)硬度不均勻度過大,需分析原因,可能是焊接工藝參數(shù)不合理,如焊接電流、電壓波動(dòng),或者焊接順序不當(dāng)。針對(duì)這些問題,調(diào)整焊接工藝,可改善焊接件的硬度均勻性,提高產(chǎn)品質(zhì)量。焊接件的高溫服役后性能檢測(cè),分析微觀與宏觀變化,保障設(shè)備安全。ER309L落錘法缺口韌性試驗(yàn)
焊接件異種材料焊接結(jié)合性能檢測(cè),探究冶金結(jié)合,優(yōu)化焊接工藝。母材
激光填絲焊接在航空航天、模具制造等領(lǐng)域應(yīng)用,其質(zhì)量檢測(cè)至關(guān)重要。外觀檢測(cè)時(shí),檢查焊縫表面是否平整,填絲是否均勻分布,有無凹陷、凸起等缺陷。在航空發(fā)動(dòng)機(jī)零部件的激光填絲焊接檢測(cè)中,外觀質(zhì)量直接影響零部件的空氣動(dòng)力學(xué)性能。內(nèi)部質(zhì)量檢測(cè)采用 CT 掃描技術(shù),CT 掃描能對(duì)焊接件進(jìn)行三維成像,檢測(cè)焊縫內(nèi)部的氣孔、裂紋、未熔合等缺陷,即使缺陷位于復(fù)雜結(jié)構(gòu)內(nèi)部也能清晰呈現(xiàn)。同時(shí),對(duì)焊接接頭進(jìn)行力學(xué)性能測(cè)試,如拉伸試驗(yàn)、疲勞試驗(yàn)等,測(cè)定接頭的強(qiáng)度和疲勞壽命。此外,通過電子探針等設(shè)備對(duì)焊接接頭的元素分布進(jìn)行分析,了解填絲與母材的融合情況。通過檢測(cè),確保激光填絲焊接質(zhì)量,滿足航空航天等領(lǐng)域?qū)附蛹膰?yán)格要求。母材