選擇性激光熔化(SLM)技術(shù)通過逐層熔化金屬粉末實現(xiàn)復雜金屬構(gòu)件的高精度成型。杭州鈦合金粉末價格
微波燒結(jié)技術(shù)利用2.45GHz微波直接加熱金屬粉末,升溫速率達500℃/min,能耗為傳統(tǒng)燒結(jié)的30%。英國伯明翰大學采用微波燒結(jié)3D打印的316L不銹鋼生坯,致密度從92%提升至99.5%,晶粒尺寸細化至2μm,屈服強度達600MPa。該技術(shù)尤其適合難熔金屬:鎢粉經(jīng)微波燒結(jié)后抗拉強度1200MPa,較常規(guī)工藝提升50%。但微波場分布不均易導致局部過熱,需通過多模腔體設計和AI溫場調(diào)控算法(精度±5℃)優(yōu)化。德國FCT Systems公司推出的商用微波燒結(jié)爐,支持比較大尺寸500mm零件,已用于衛(wèi)星推進器噴嘴批量生產(chǎn)。山東粉末合作新型高熵合金粉末的開發(fā)為極端環(huán)境下的金屬3D打印提供了材料解決方案。
通過雙送粉系統(tǒng)或?qū)娱g材料切換,3D打印可實現(xiàn)多金屬復合結(jié)構(gòu)。例如,銅-不銹鋼梯度材料用于火箭發(fā)動機燃燒室內(nèi)壁,銅的高導熱性可快速散熱,不銹鋼則提供高溫強度。NASA開發(fā)的GRCop-42(銅鉻鈮合金)與Inconel 718的混合打印部件,成功通過超高溫點火測試。挑戰(zhàn)在于界面結(jié)合強度控制:不同金屬的熱膨脹系數(shù)差異可能導致分層,需通過過渡層設計(如添加釩或鈮作為中間層)優(yōu)化冶金結(jié)合。未來,AI驅(qū)動的材料組合預測將加速FGM的工程化應用。
液態(tài)金屬(鎵銦錫合金)3D打印技術(shù)通過微注射成型制造可拉伸電路,導電率3×10? S/m,拉伸率超200%。美國卡內(nèi)基梅隆大學開發(fā)的直寫式打印系統(tǒng),可在彈性體基底上直接沉積液態(tài)金屬導線(線寬50μm),用于柔性傳感器陣列。另一突破是納米銀漿打?。簾Y(jié)溫度從300℃降至150℃,兼容PET基板,電阻率2.5μΩ·cm。挑戰(zhàn)包括:① 液態(tài)金屬的高表面張力需低粘度改性劑(如鹽酸處理);② 納米銀的氧化問題需惰性氣體封裝。韓國三星已實現(xiàn)5G天線金屬網(wǎng)格的3D打印量產(chǎn),成本降低40%。
316L不銹鋼粉末因其優(yōu)異的耐腐蝕性和可加工性,成為工業(yè)級3D打印的關(guān)鍵材料。通過粉末床熔融(PBF)技術(shù)制造的316L零件,微觀結(jié)構(gòu)呈現(xiàn)蜂窩狀奧氏體相,屈服強度可達500MPa以上,延伸率超過40%。該材料廣泛應用于石油化工管道、海洋裝備和食品加工設備。值得注意的是,粉末的球形度(>95%)和流動性(霍爾流速≤25s/50g)直接影響打印質(zhì)量。目前行業(yè)采用氣霧化工藝生產(chǎn)高純度(O<0.03%)不銹鋼粉末,同時開發(fā)了含銅抑菌不銹鋼粉末以滿足醫(yī)療器械的特殊需求。粉末冶金齒輪通過模壓-燒結(jié)-精整工藝制造的密度可達理論密度的95%以上。廣西因瓦合金粉末合作
馬氏體時效鋼(18Ni300)粉末通過定向能量沉積(DED)技術(shù),可制造兼具高韌性和超高的強度的模具鑲件。杭州鈦合金粉末價格
電子束熔化(EBM)在真空環(huán)境中利用高能電子束逐層熔化金屬粉末,其能量密度可達激光的10倍以上,特別適合加工高熔點材料(如鈦合金、鉭和鎳基高溫合金)。EBM的預熱溫度通常為700-1000℃,可明顯降低殘余應力,避免零件開裂。例如,GE航空采用EBM制造LEAP發(fā)動機的燃油噴嘴,將傳統(tǒng)20個零件集成為單件,減重25%,耐溫性能提升至1200℃。但EBM的打印精度(約100μm)低于SLM,表面需后續(xù)機加工。此外,真空環(huán)境可防止金屬氧化,但設備成本和維護復雜度較高,限制了其在中小企業(yè)的普及。杭州鈦合金粉末價格