柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數據采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務處理系統(tǒng), 可實現柴油機監(jiān)測、保護、分析、診斷等功能。包括數據采集與工況監(jiān)測、活塞缸套磨損監(jiān)測分析、主軸承磨損狀態(tài)監(jiān)測分析、氣閥間隙異常監(jiān)測分析和瞬時轉速監(jiān)測分析等各種功能。信號分析、特征提取及診斷原理是每個監(jiān)測診斷子功能的部分, 各子功能都有相應的信號分析與特征提取方法, 包括信號預處理、時域、頻域分析、小波分析等, 自動形成反映柴油機運行狀態(tài)的特征量, 為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗特征參量的有效性、建立故障標準征兆群, 并運用模糊貼近度來實施故障類型的診斷識別。盈蓓德科技開發(fā)的智能監(jiān)測系統(tǒng)實現了對電動機(馬達)、減速機等旋轉設備關鍵參數監(jiān)測、掌握設備運行狀態(tài)。常州產品質量監(jiān)測系統(tǒng)供應商
現代化生產企業(yè)為了極大限度地提高生產水平和經濟效益,不斷地向規(guī)?;透呒夹g技術含量發(fā)展,因此生產裝置趨向高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態(tài)監(jiān)測維修既能經常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。嘉興耐久監(jiān)測控制策略設備的故障監(jiān)測診斷技術是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查。
基于人工神經網絡的診斷方法簡單處理各單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力。基于集成型智能系統(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的**系統(tǒng)與ANN的結合,模糊邏輯與ANN的結合,混沌理論與ANN的結合,模糊神經網絡與**系統(tǒng)的結合。
隨著電力電子技術、自動化控制技術的不斷發(fā)展,電機在工業(yè)生產以及家用電器中得到了應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術實現要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監(jiān)測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術問題?;谌斯ぶ悄芩惴ǖ男滦偷碾姍C故障預測系統(tǒng),適用范圍廣,能在更多的工業(yè)場合應用。
針對刀具磨損狀態(tài)在實際生產加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經網絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到的數據作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現自學習,不斷提升模型的精度和預測效果。盈蓓德科技可以提供故障預判準確度高、更經濟更可靠的旋轉設備健康狀態(tài)監(jiān)測方案。嘉興非標監(jiān)測
智能電機監(jiān)測系統(tǒng)選擇傳感器采集旋轉設備的溫度、振動數據,分析變化趨勢以判斷設備情況。常州產品質量監(jiān)測系統(tǒng)供應商
傳統(tǒng)維護模式中的故障后維護與定期維護將影響生產效率與產品質量,并大幅提高制造商的成本。隨著物聯(lián)網、大數據、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯(lián)網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。電動機是機械加工中不可或缺的必備工具,電動機在運轉中常產生各種故障,為保證電動機運行安全,對電動機運行狀態(tài)進行在線監(jiān)測尤為重要。以三相異步電動機為研究對象,采用傳感器獲取電動機運行中的重要參數(振動、噪聲、轉速及溫度等),由時/頻域分析及能量分析等方法提取電動機運行特征量,構成特征向量,采用BP神經網絡訓練的方法建立狀態(tài)識別模型,通過BP神經網絡模式識別方法,判斷電動機運行的狀態(tài),在此基礎上,利用LabVIEW軟件構建可視化監(jiān)測系統(tǒng),將電動機運行參數及狀態(tài)實時顯示在可視化界面中,完成在線智能監(jiān)測。常州產品質量監(jiān)測系統(tǒng)供應商
上海盈蓓德智能科技有限公司坐落于上海市閔行區(qū)新龍路1333號28幢328室,是集設計、開發(fā)、生產、銷售、售后服務于一體,電工電氣的其他型企業(yè)。公司在行業(yè)內發(fā)展多年,持續(xù)為用戶提供整套智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)的解決方案。公司具有智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等多種產品,根據客戶不同的需求,提供不同類型的產品。公司擁有一批熱情敬業(yè)、經驗豐富的服務團隊,為客戶提供服務。盈蓓德,西門子以符合行業(yè)標準的產品質量為目標,并始終如一地堅守這一原則,正是這種高標準的自我要求,產品獲得市場及消費者的高度認可。上海盈蓓德智能科技有限公司以先進工藝為基礎、以產品質量為根本、以技術創(chuàng)新為動力,開發(fā)并推出多項具有競爭力的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產品,確保了在智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)市場的優(yōu)勢。