激光反無設備的攝像頭中加裝了高性能的AI圖像處理板,將設備部署在預定區(qū)域,AI圖像處理板在算法的加持下,實現(xiàn)對禁飛區(qū)域空中目標的24小時不間斷AI巡邏,能夠快速發(fā)現(xiàn)、鎖定、處置目標,在數(shù)秒內(nèi)利用高能激光毀傷無人機目標。要想到達更加精細的識別目的,板卡的性能很關鍵,同時視頻數(shù)據(jù)的質(zhì)量同樣重要。高幀頻的相機能夠捕捉更多畫面細節(jié),這樣高性能圖像處理板在進行AI識別處理時,就能夠獲取更多信息,識別的精度就會提升。像成都慧視開發(fā)的高性能高幀頻圖像處理板就考慮到了這一點,通過RK3588和FPGA接口的深度定制,輕松打破高幀頻視頻的輸入輸出,讓板卡實現(xiàn)更精細的數(shù)據(jù)處理。哪里能夠定制跟蹤車的AI算法?智慧城市AI智能監(jiān)控
而維修機器人則能夠通過圖像識別、精細遠程控制技術,實現(xiàn)遠程快速維修,通過加裝高性能圖像處理板,機器人能夠精細電網(wǎng)缺陷以及損壞程度,并通過攝像頭實時回傳高清畫面,工程師只需要遠程操控機器人進行修補,實現(xiàn)精細縫合。整個過程只需要極少數(shù)的人員參與,整個巡檢維修的時間能夠從7小時縮減到1小時,極大地保障了電力供應。成都慧視光電采用RK3588開發(fā)而成的Viztra-HE030圖像處理板,具備八核處理器,采用BTB傳輸接口,擁有極強傳輸能力,成都慧視能夠憑借豐富的經(jīng)驗,快速集成開發(fā)SDI、CVBS、DVP、LVDS、cameralink等接口以及金屬外殼和散熱器。通過6.0TOPS的算力,以及豐富的接口定制,板卡能夠快速適配不同的無人機和機器人,用在我國西部電力運維領域,將是工程師打造智能化維護的關鍵技術。河南視頻識別AI智能提供商可以幫助進行算法訓練的工具有哪些?
成都慧視光電技術有限公司開發(fā)的Viztra-HE030圖像處理板,利用國產(chǎn)化高性能芯片RK3588開發(fā)而成,它能夠?qū)崿F(xiàn)6.0TOPS的算力,能夠輕松應對糧庫內(nèi)部復雜的環(huán)境,成都慧視可以根據(jù)客戶使用的相機接口進行圖像處理板的接口深度定制,實現(xiàn)快速的AI害蟲識別。在算法方面,可以使用自己的算法,我司還可以根據(jù)需求定制提供算法性能訓練提升工具SpeedDP,平臺可以通過大量的糧庫害蟲AI識別模型訓練,提升自身算法精度,進而提升攝像頭害蟲識別精度。
在許多領域,無人機的作業(yè)環(huán)境相對復雜,需要識別處理圖像背景目標眾多,這種環(huán)境下,要想實現(xiàn)更高精度的檢測識別效果,圖像處理板的性能至關重要。在慧視光電開發(fā)的多款圖像處理板中,Viztra-HE030圖像處理板以6.0TOPS得以勝任。這款板卡采用了瑞芯微旗艦級芯片RK3588,8nmLP制程,搭載八核64位CPU,主頻高達2.4GHz。集成ARMMali-G610MP4四核GPU,內(nèi)置AI加速器NPU,支持主流的深度學習框架。性能強勁的RK3588可為無人機AI識別的應用場景帶來更強大的性能表現(xiàn)?;垡暪怆娡瞥龅哪繕烁櫨邆溆洃浉櫣δ?。
此前,九號電動車的自平衡技術一次次刷新人們的認知,而其中一款探索版車型,甚至加入了智能攝像頭,能夠識別行人、障礙物,自動規(guī)劃行駛路線,達成自動駕駛的目的。很多人好奇這種怎么做到的,其實很簡單,車輛內(nèi)部攝像頭安裝了具備圖像處理的傳感器。這種傳感器就是圖像處理板,這類AI板卡在目標識別算法的賦能下,就能夠?qū)σ曇胺秶奈矬w進行AI分類識別,從而幫助車輛進行避障。像成都慧視開發(fā)的高性能AI圖像處理板Viztra-HE030,采用的是RK3588開發(fā)而成,憑借其工業(yè)級的性能,6.0TOPS的算力,就能夠在車輛行駛過程中的復雜環(huán)境下進行周邊環(huán)境的快速AI識別分類。當然,算法的能力也十分關鍵,由于車輛行駛環(huán)境的不斷變化,算法面臨的識別畫面也不斷變化,如何精細的進行識別,關系到車輛的行駛安全。圖像標注是一項繁瑣的工作。安徽慧視光電AI智能目標跟蹤
慧視光電開發(fā)的AI智能算法。智慧城市AI智能監(jiān)控
多目標跟蹤是指在連續(xù)的圖像中,通過目標檢測算法識別出每一幀中的目標,并在時間上跟蹤它們的位置和狀態(tài)。但目標會不斷發(fā)生尺度、形變、遮擋等變化,而且還會有目標出現(xiàn)和消失的情況,再加上視頻采集端的相機所處環(huán)境可能受到外界影響導致抖動的情況(例如無人機高空檢測),就會給多目標跟蹤造成一定的困難。由于我們不能控制目標,所以只能從視頻采集端維護跟蹤的穩(wěn)定性。因此,成都慧視針對于多目標檢測跟蹤抖動丟失的優(yōu)化方法是:1.改進目標檢測,使用更加魯棒的目標檢測算法。2.增強特征描述,利用深度學習提取更高級別的語義特征,這些特征對于小范圍內(nèi)的視角變化具有更好的不變性3.改進運動模型,在算法中加入對攝像頭運動的估計,通過補償攝像頭運動來減小目標真實運動與預測之間的差距。4.數(shù)據(jù)關聯(lián)策略,設計更靈活的數(shù)據(jù)關聯(lián)算法,允許更大的距離閾值來匹配候選目標。智慧城市AI智能監(jiān)控